skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fritz, Shayden"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NMR spectroscopy, molecular modeling, and conductivity experiments were used to investigate micelle formation by the amino acid-based surfactant tridecanoic L-glutamic acid. Amino acid-based biosurfactants are green alternatives to surfactants derived from petroleum. NMR titrations were used to measure the monomeric surfactant’s primary and gamma (γ) carboxylic acid pKa values. Intramolecular hydrogen bonding within the surfactant’s headgroup caused the primary carboxylic acid to be less acidic than the corresponding functional group in free L-glutamic acid. Likewise, intermolecular hydrogen bonding caused the micellar surfactant’s γ carboxylic functional group to be less acidic than the corresponding monomer value. The binding of four positive counterions to the anionic micelles was also investigated. At pH levels below 7.0 when the surfactant headgroup charge was −1, the micelle hydrodynamic radii were larger (~30 Å) and the mole fraction of micelle-bound counterions was in the 0.4–0.7 range. In the pH range of 7.0–10.5, the micelle radii decreased with increasing pH and the mole fraction of micelle bound counterions increased. These observations were attributed to changes in the surfactant headgroup charge with pH. Above pH 10.5, the counterions deprotonated and the mole fraction of micelle-bound counterions decreased further. Finally, critical micelle concentration measurements showed that the micelles formed at lower concentrations at pH 6 when the headgroup charge was predominately −1 and at higher concentrations at pH 7 where headgroups had a mixture of −1 and −2 charges in solution. 
    more » « less
  2. Osiński, Marek; Kanaras, Antonios G. (Ed.)
    Periodontal diseases are prevalent worldwide and are linked to numerous other health conditions due to dysbiosis and chronic inflammatory state. Most periodontal diseases are caused by pathogenic bacteria that colonize dental tissues in the form of biofilm. Eradication of bacterial biofilms can be difficult to achieve due to the complex architecture of the teeth and gums which complicates the removal. Orthodontic wires and dental devices introduce additional hurdles to the adequate removal of biofilms by traditional methods since mechanical disruption via direct contact with toothbrush bristles, floss, and abrasive toothpaste is limited. Magnetically activated nanoparticles (NPs), specifically iron oxide nanoparticles (IONPs) that can be functionalized as antimicrobial particles and remotely controlled by magnetic fields, are of interest for oral biofilm eradication. We present data in multi-species bacterial cultures, established biofilms, human gingival keratinocytes, and human gingival fibroblast cells alone and in the presence of multispecies biofilm co-cultures to determine the safest, most efficacious IONP size ranges and treatment concentrations of active magnetic NPs for removal of dental biofilms. We report enhanced efficacy for IONPs coated with alginate vs. dextran, and small sizes (~8 nm vs. >20 nm in size) appear to exhibit enhanced antimicrobial efficacy. Human gingival keratinocyte (TIGK) cells in co-culture with treated and untreated multispecies biofilms in an in-vitro periodontitis model also exhibited a trend of reduced inflammatory markers in wells with IONP-treated biofilms. 
    more » « less